Veď to poznáte: pripojíte batériu k regulátoru a zaiskrí to. Niekedy to riadne „plesne“.
Čím viac-článková batéria, tým silnejší je tento efekt.
Okrem toho, že sa človek niekedy až zľakne, tak to (elektrický výboj) devastuje povrch konektorov.
Existujú síce rôzne „udělátka“ na konektory, ale čoraz častejšie sa objavujú regulátory, ktoré už v sebe majú zabudovaný obvod, zamedzujúci iskreniu (Anti-spark circuit).
Zaujímalo nás, ako funguje.
autor: Janko O.
Začnime otázkou: prečo bežné regulátory pri pripojení batérie iskria?
Súčasťou každého „striedavého“ regulátora je kondenzátor, alebo rovno niekoľko kondenzátorov, pomerne vysokých kapacít (väčšinou N x 470μF). Čo tieto kondenzátory v regulátore robia a že to nemajú vôbec ľahké, je popísané v článku „Ťažký „život“ kondenzátorov v striedavých regulátoroch“. Je potrebné, aby tieto kondenzátory okrem požadovanej kapacity, mali aj čo najvyššiu kvalitu, aby boli LOW ESR, čiže aby mali čo najnižší stratový - sériový odpor Rs.
Lenže to, čo je výhodné počas prevádzky (vysoká kapacita, nízky Rs) je problém v prechodových javoch, čiže pri pripojení regulátora k batérii. Ide o to, že pripájame vybitý kvatitný kondenzátor (kondenzátory) ku kvalitnej batérii. V okamihu pripojenia tečie z batérie do kondenzátora nabíjací prúd, ktorého veľkosť (podľa pána Ohma) je úmerná pomeru napätia a odporu (I = U / R). Keďže kondenzátor/y v nezapojenom regulátore sú vybité, tak za „U“ môžeme považovať napätie batérie. Za „R“ môžeme pri zanedbaní určitých zjednodušení považovať súčet Ri (vnútorný odpor pohonnej batérie) a Rs (stratový – sériový odpor kondenzátora) R = Ri + Rs.
Problém je v tom, že všeobecnou snahou je, aby obidva tieto odpory boli čo najmenšie. Rs sme už spomínali a tak sa ešte pozrime na Ri. Tomu sme na našej web stránke venovali dostatok pozornosti v mnohých článkoch (napr. Céčka a vnútorný odpor LiPo akumulátorov a pod.). Keď to skrátime a zhrnieme, tak môžeme konštatovať, že Ri je tým menší, čím vyššia je kapacita batérie a čím vyššia je jej kvalita, čiže čím vyššie sú jej „Céčka“. A po vysokých Céčkach my modelári bažíme, ako by to bol modelársky svätý grál.
Aby sme mali predstavu, že aké nabíjacie prúdy tečú z batérie do regulátora (skôr jeho kondenzátora) v okamihu pripojenia, skúsme dosadiť nejaké hodnoty. Batéria (napr. 3300 mAh) nech je 6-článková, čiže napätie vyše 22 Voltov. Jej Ri je 6 x 3,7 = 22,2 miliOhmu. Rs kondenzátorov v regulátore bude mať podobnú hodnotu, uvažujme 30 miliOhmov. Keď to zrátame, dostaneme nabíjací prúd s hodnotou asi 400 Ampérov. Trvá síce len kratunko, ale aj tak stihne do konektora „vypáliť“ drobný kráter.
Ako je už v úvode spomínané, existujú rôzne „udělátka“, ktoré iskreniu pri pripojení zabraňujú. Skoro všetky sú založené na tom, že najprv je konektor regulátora ku konektoru batérie pripojený cez obmedzovací odpor (ktorý spôsobí pomalšie nabíjanie kondenzárora oveľa nižším prúdom) a až potom dôjde k priamemu prepojeniu regulátora a pohonnej batérie.
Jednotlivé vyhotovenia sa potom líšia aj činnosťou obsluhy:
tie lepšie (zložitejšie, drahšie) nevyžadujú žiadnu zmenu pri spájaní konektorov. Zasuňte a hotovo, Žiadna (alebo len veľmi malá) iskra.
tie jednoduchšie (lacnejšie) vyžadujú pri pripájaní určitú, hoci len jednoduchú „procedúru“. Najprv je treba dotknúť sa vývodu obmedzovacieho rezistora a až potom normálne zasunúť konektory do seba.
Fotografie sme čerpali a bližšie je k tejto problematike popísané na RC mánii vo vlákne Anti spark - konektory Jeti
Od istej doby však niektorí výrobcovia prichádzajú s regulátormi, ktoré hoci majú obyčajné konektory, tak iskrenie eliminujú sami, akosi „automaticky“. Ako fungujú? Ako je to vo vnútri riešené – zapojené?
Podstatné je to, že kondenzátory nie sú pripojené priamo na („vstupné“) prívody regulátora, ale cez špeciálny elektronický obvod. Ten kondenzátory nepripojí hneď pri spojení konektorov, ale o chvíľu neskôr. A navyše, nepripojí ich skokovo, ale plynule, aby sa kondenzátory nabíjali dlhší čas, ale podstatne nižším prúdom. Ako môže taký Anti-spark obvod vyzerať, ukazuje nasledujúca schéma:
Kondenzátor(y) Cr nie sú k napájaniu regulátora pripojené priamo, ale cez výkonový MOSFET tranzistor T1 (jeho súčasťou je aj na schéme znázornená substrátová dióda). Oneskorené a postupné plynulé otváranie tranzistora T1 (a tým postupné plynulé nabíjanie kondenzátora Cr) zabezpečuje časovací obvod R1 C1. Otváracie napätie tranzistora (Ugs) stúpa postupne. Po určitom čase je tranzistor otvorený naplno a kondenzátor Cr je vlastne napriamo pripojený k napájaniu. Zenerova dióda ZD nedovolí, aby napätie Ugs prekročilo nedovolenú hodnotu. Rezistory R2 a R3 slúžia len na vybitie kondenzátorov C1 a Cr po vypnutí regulátora.
Verím, že o pár rokov bude Anti-spark obvod súčasťou každého regulátora, alebo aspoň tých, na vyššie napätie (viac ako 3-článok LiPol).